题目内容
已知抛物线y=﹣﹣x+4,
(1)用配方法确定它的顶点坐标、对称轴;
(2)x取何值时,y随x增大而减小?
(3)x取何值时,抛物线在x轴上方?
为切实减轻中小学生课业负担、全面实施素质教育,某中学对本校学生课业负担情况进行调查. 在本校随机抽取若干名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的,且完成课外作业时间低于60分钟的学生数占被调查人数的10%.现将抽查结果绘制成了一个不完整的频数分布直方图,如图所示.
⑴这次被抽查的学生有 人;
⑵请补全频数分布直方图;
⑶被调查这些学生每天完成课外作业时间的中位数在 组(填时间范围);
⑷若该校共有3600名学生,请估计该校大约有多少名学生每天完成课外作业时间在80分钟以上(包括80分钟)
阅读材料:
分解因式:x2+2x-3
【解析】原式=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:
(1)分解因式:m2-4mn+3n2;
(2)无论m取何值,代数式m2-3m+2015总有一个最小值,请你尝试用配方法求出它的最小值.
若关于x的方程kx2-3x-=0有实数根,则实数k的取值范围是( )
A. k=0 B. k≥-1且k≠0 C. k≥-1 D. k>-1
如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1
(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为______,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是______.
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.
如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=______.
用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是( )
A. 5
B. 6
C. 7
D. 8
用配方法解一元二次方程时,下列变形正确的为( )
A. B.
C. D.
在Rt△ABC中,∠C为直角,sinA=,则cosB的值是( )
A. B. C. 1 D.