题目内容
已知:如图, 和为两个共直角顶点的等腰直角三角形,连接、.图中一定与线段相等的线段是__________.
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。这个比值,被称为黄金分割数。我国著名数学家华罗庚普及并做出重要贡献的优选法中有一种0.618法也应用了黄金分割数。
定义:点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点(如图1).
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.
甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程( )
A. 98+x=x﹣3 B. 98﹣x=x﹣3 C. (98﹣x)+3=x D. (98﹣x)+3=x﹣3
在中, , ,点在的延长线上, 是的中点, 是射线上一动点,且,连接,作, 交延长线于点.
()如图,当点在上时,填空: __________ (填“”、“”或“”).
()如图,当点在的延长线上时,请根据题意将图形补全,判断与的数量关系,并证明你的结论.
计算:
()因式分【解析】 ;
()计算: ;
()解分式方程: .
张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子的最小值是”.其推导方法如下:在面积是的矩形中设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是.模仿张华的推导,你求得式子的最小值是( ).
A. B. C. D.
若有意义,则的取值范围是( ).
阅读下列材料,并完成填空.
你能比较20152 016和20162 015的大小吗?
为了解决这个问题,先把问题一般化,比较nn+1和(n+1)n(n≥1,且n为整数)的大小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.
(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)
①12____21;②23_____32;③34_____43;④45_____54;
⑤56____65;⑥67_____76;⑦78_____87;
(2)归纳第(1)问的结果,可以猜想出nn+1和(n+1)n的大小关系;
(3)根据以上结论,可以得出20162017和20172016的大小关系.
将下列多项式因式分解,结果中不含有x+2因式的是( )
A. x2-4 B. x2+2x C. x2-4x+4 D. (x+3)2-2(x+3)+1