题目内容

精英家教网如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).
分析:要求扇形的面积,关键是求得扇形所在的圆心角的度数.根据垂径定理的推论得到直角三角形OAM,再进一步利用解直角三角形的知识求得角的度数即可.
解答:解:∵弦AB和半径OC互相平分,
∴OC⊥AB,
OM=MC=
1
2
OC=
1
2
OA.
在Rt△OAM中,sinA=
OM
OA
=
1
2

∴∠A=30°.
又∵OA=OB,
∴∠B=∠A=30°,
∴∠AOB=120°.
∴S扇形=
120•π•1
360
=
π
3
点评:综合运用了垂径定理的推论、锐角三角函数、以及扇形的面积公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网