题目内容
【题目】如图,点D在△ABC的边AB上,点E为AC的中点,过点C作CF∥AB交DE的延长线于点F,连接AF.
![]()
(1)求证:CD=AF;
(2)若∠AED=2∠ECD,求证:四边形ADCF是矩形.
【答案】(1)见解析;(2)见解析.
【解析】
(1)首先证明△AED≌△CFE,即可证得四边形ADCF的对角线互相平分,依据对角线互相平分的四边形是平行四边形即可证得;
(2)利用三角形的外角的性质即可证得∠EDC=∠ECD,则根据等角对等边即可证得DE=EC,从而证明平行四边形ADCF的对角线相等,即可证得.
(1)∵CF∥AB,
∴∠EFC=∠ADE,
则在△AED和△CFE中,
,
∴△AED≌△CFE,
∴DE=FE,
又∵AE=CE,
∴四边形ADCF是平行四边形,
∴CD=AF;
(2)∵∠AED=2∠ECD,∠AED=∠ECD+∠EDC,
∴∠EDC=∠ECD,
∴DE=EC,
又∵DE=FE,AE=CE,
∴AC=DF,
∴平行四边形ADCF是矩形.
【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2,3,4,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,实验数据如下表:
摸球总次数 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和为6”出现的频数 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和为6”出现的频数 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为6”的频率将稳定在它的概率附近,估计出现“和为6”的概率是 .
(2)当x=5时,请用列表法或树状图法计算“和为6”的概率
(3)判断x=5是否符合(1)的结论,若符合,请说明理由,若不符合,请你写出一个符合(1)的x的值.