题目内容

如图,在矩形ABCD中,AB=2,AD=

(1)在边CD上找一点E,使EB平分∠AEC,并加以说明;

(2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F。

①求证:点B平分线段AF;

②△PAE能否由△PFB绕P点按顺时针方向旋转而得到?若能,加以证明,并求出旋转度数;若不能,请说明理由。

解:(1)当E为CD中点时,EB平分∠AEC。

由∠D=900 ,DE=1,AD=,推得DEA=600,同理,∠CEB=600 ,从而∠AEB=∠CEB=600 ,即EB平分∠AEC。

(2)①∵CE∥BF,∴== ∴BF=2CE。

∵AB=2CE,∴点B平分线段AF

②能。

证明:∵CP=,CE=1,∠C=900 ,∴EP=

在Rt △ADE中,AE=  =2,∴AE=BF,

又∵PB=,∴PB=PE

∵∠AEP=∠BP=900 ,∴△PAS≌△PFB。

∴△PAE可以△PFB按照顺时针方向绕P点旋转而得到。

旋转度数为120

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网