题目内容

如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为__________

 

 

【答案】

【解析】

试题分析:由四边形ABCD是矩形,可得:∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由折叠的性质可得:∠EFC=∠B=90°,CF=BC=5,由同角的余角相等,即可得∠DCF=∠AFE,然后在Rt△DCF中,即可求得答案:∵四边形ABCD是矩形,

∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,

由题意得:∠EFC=∠B=90°,CF=BC=5,

∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,

∴∠DCF=∠AFE,

∵在Rt△DCF中,CF=5,CD=4,

∴DF=3,

∴tan∠AFE=tan∠DCF=

故答案为:

考点:翻折变换(折叠问题).

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网