题目内容
如图,一艘海轮位于灯塔P的东北方向,距离灯塔海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为______海里(结果保留根号).
若四边形的边长依次a、b、c、d,且a2+b2+c2+d2=2ac+2bd,这个四边形是__________。
如图,某湖心岛上有一亭子A,在亭子A的正东方向上的湖边有一棵树B,在这个湖心岛的湖边C处测得亭子A在北偏西45°方向上,测得树B在北偏东36°方向上,又测得B、C之间的距离等于200米,求A、B之间的距离
(结果精确到1米).(参考数据:≈1.414,sin36°≈0.588,cos36°≈0.809,tan36°≈0. 727,cot36°≈1.376)
如图,在平行四边形ABCD中,点E在边DC上,联结AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是( )
A. FC:FB=1:3 B. CE:CD=1:3 C. CE:AB=1:4 D. AE:AF=1:2.
已知:如图,BC是⊙O的弦,线段AD经过圆心O,点A在圆上,AD⊥BC,垂足为点D,若AD=8,tanA= .
(1)求弦BC的长;
(2)求⊙O半径的长.
方程x2+4x﹣1=0的解是:______.
一组数据:3,2,1,2,2的众数,中位数,方差分别是( )
A. 2,1,0.4 B. 2,2,0.4 C. 3,1,2 D. 2,1,0.2
一组数据1、3、4、5、x、9的众数和中位数相同,那么x的值是____.
已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.