题目内容
如图,△ABC为等边三角形,D是△ABC 内一点,且AD=2,将△ABD绕点A逆时针旋转到△ACE的位置,这时点D走过的路线长为 .
;
已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.
(1)求证:∠CDB=∠A;
(2)若BD=5,AD= 12,求CD的长.
如图,⊙的半径为5,为弦,,垂足为,如果,那么的长是( )
A.4 B. 6 C. 8 D. 10
已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.
(1)求此抛物线的解析式和直线的解析式;
(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,以A、P、Q为顶点的三角形与△AOC相似;
(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大.若存在,求出点D的坐标;若不存在,请说明理由.
将抛物线先沿轴向右平移1个单位, 再沿轴向上移2个单位,所得抛物线的解析式是
A. B.
C. D.
如图,在边长为1的正方形网格中有两个三角形△ABC和△DEF,试证这两个三角形相似.
已知关于x的方程.
(1)当k取何值时,方程有两个实数根;
(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;
(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
如图,在△中,点分别在边上,∥,若,,则等于
A. B. C. D.