题目内容
如图,直线PC交⊙O于A,C两点,AB是⊙O的直径,AD平分∠PAB交⊙O于点D,过D作DE垂直PA,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若AE=1,AC=4,求直径AB的长.
某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如图两幅统计图(不完整).
请你根据图中所给的信息解答下列问题:
(1)这次测试,一共抽取了名学生;
(2)请将以上两幅统计图补充完整;(注:扇形图补百分比,条形图补“优秀”人数与高度);
(3)若“一般”和“优秀”均被视为达标成绩,该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人.
满足的数在数轴上表示为( )
A. B. C. D.
如图,已知AB是⊙O的弦,AC是⊙O的直径,D为⊙O上一点,过D作⊙O的切线交BA的延长线于P,且DP⊥BP于P.若PD+PA=6,AB=6,则⊙O的直径AC的长为( )
A. 5 B. 8 C. 10 D. 12
计算3x3-2x3的结果( )
A. 1 B. x3 C. x6 D. 5x3
(1)计算:|-2|×-2sin;
(2)化简:(a+2)(a-2)-a(a-1).
对某个函数给定如下定义:若存在实数M>0,对于任意的函数值y,都满足|y|≤M,则称这个函数是有界函数.在所有满足条件的M中,其中最小值称为这个函数的边界值.现将有界函数y=2+1(0xm,1≤m≤2)的图象向下平移m个单位,得到的函数边界值是t,且≤t≤2,则m的取值范围是( )
A. 1≤m≤ B. ≤m≤ C. ≤m≤ D. ≤m≤2
我国古代数学名著《孙子算经》中记载了一道题,大意如下:
100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?
请解答上述问题.
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.