题目内容
如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC∽△ACB,那么可添加的条件是 .
将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为 .
计算
(1)﹣14﹣
(2)6tan230°﹣cos30°•tan60°﹣2sin45°+cos60°.
如图1,抛物线C1的顶点A(0,﹣2),抛物线过C(4,6),直线AC与x轴交于点B.
(1)求抛物线的解析式,并求出B点坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.
在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).点C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.
(1)画出△ABC,点C的坐标是 ,△ABC的面积是 ;
(2)将△ABC绕点C旋转180°得到△A1B1C,连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由.
如图所示,点P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB,则∠APB等于( )
A.150° B.105° C.120° D.90°
由二次函数y=2(x﹣3)2+1,可知( )
A.其图象的开口向下 B.其图象的对称轴为直线x=﹣3
C.其最小值为1 D.当x<3时,y随x的增大而增大
如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是( )
A.60° B.120° C.60°或120° D.30°或150°
某农业合作社投资64000元共收获80吨的农产品,目前,该农产品可以以1200元/吨售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,且同时每星期每吨价格将上涨200元.问储藏多少星期出售这批农产品可获利122000元?