题目内容

【题目】如图,已知ADDFECDF,∠1=∠3,∠2=∠4,求证:AEDF.(请在下面的解答过程的空格内填空或在括号内填写理由)

证明:∵ADDFECDF,(已知)

∴∠BFD=∠ADF90°.(

EC∥(

∴∠EBA_____(两直线平行,内错角相等)

∵∠2=∠4,(已知)

∴∠EBA=∠4.(等量代换)

AB_____.(

∴∠2+ADC180°.(

∴∠2+ADF+3180°

∵∠1=∠3.(已知)

∴∠2+ADF+1180°.(等量代换)

_____+ADF180°

AEDF.(

【答案】见解析.

【解析】

利用内错角相等两直线平行,得到ECAD,再有两直线平行,内错角相等,得出∠EBA=∠2,等量代换得到∠EBA=∠4,利用同位角相等两直线平行,得到ABCD,再有两直线平行,同旁内角互补得到∠2+ADC180°,等量代换得到∠EAD+ADF180°,再根据同旁内角互补,两直线平行得到AEDF

证明::∵ADDFECDF,(已知)

∴∠BFD=∠ADF90°(垂直的定义),

ECAD(内错角相等,两直线平行),

∴∠EBA=∠2(两直线平行,内错角相等)

∵∠2=∠4,(已知)

∴∠EBA=∠4.(等量代换)

ABDC(同位角相等,两直线平行),

∴∠2+ADC180°(两直线平行,同旁内角互补),

∴∠2+ADF+3180°

∵∠1=∠3(已知),

∴∠2+ADF+1180°(等量代换),

∴∠EAD+ADF180°

AEDF(同旁内角互补,两直线平行),

故答案为:垂直的定义,AD,∠2CD,同位角相等,两直线平行,两直线平行,同旁内角互补,∠EAD,同旁内角互补,两直线平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网