题目内容
三棱柱的三视图如图所示,△EFG中,EF=6cm,∠EFG=45º,则AB的长为( )
A. 6cm B. 3cm C. 3cm D. 6cm
A. B. C. D.
如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为( )
A. 54° B. 62° C. 64° D. 74°
(1)计算:.
(2)先化简,再求值:,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是( )
A. 2cm B. 3cm C. 4cm D. 5cm
如图1,已知抛物线y=ax2+bx上有两点A、C,分别过A、C作x轴的垂线,垂足分别为点B、点D,OC与AB相交于点E.已知点A(1,3),且△AOB≌△OCD.
(1)求此抛物线的解析式;
(2)点P为线段OC上一动点,过点P作x轴的垂线交抛物线于点F,当四边形AEPF为平行四边形时,求点P坐标;
(3)如图2,若△AOB沿AC方向由A→C平移得到△A′O′B′,在平移过程中,△AOB与△OCD的重叠部分的面积记为S,试探究S是否存在最大值?若存在,求出A′的坐标;若不存在,请说明理由.
先化简,再求值:,其中.
如图,在平面直角坐标系中,直线l:y=kx+h与x轴相交于点A(﹣1,0),与y轴相交于点C,与抛物线y=﹣x2+bx+3的一交点为点D,抛物线过x轴上的AB两点,且CD=4AC.
(1)求直线l和抛物线的解析式;
(2)点E是直线l上方抛物线上的一动点,求当△ADE面积最大时,点E的坐标;
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,四边形APDQ能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.
一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.