题目内容

把一块含45°的直角三角板ODE放在如图所示的直角坐标系中,已知动点P在斜边OD上运动,点A的坐标为数学公式,当线段AP最短时,则点P的坐标为


  1. A.
    (0,0)
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:由点A到OD的距离,即点A到OD的垂线段,这也是最短的,由已知特殊角和点的坐标即求得.
解答:解:如图,作AB⊥OD于点B点,BC⊥OE于点C.
把一块含45°的直角三角板ODE放在如图所示的直角坐标系中,
由三角板的特点,都有一角为90°,
∴∠AOD=∠BOE=45°,
∴另一角也是45°.
则在Rt△AOB中,由点A坐标知道OA=
∴OB=OAcos45°=
在Rt△OBC中,BC=OC=OBsin∠BOE=
∴B(),
点B即为点A到OD距离最短时的点P.
∴点P().
故选B.
点评:本题考查了解直角三角形,由特殊角结合三角函数求边长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网