题目内容
在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是
A. B. C. D. .
如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为( ).
A. 28°,120° B. 32°,120° C. 120°,28° D. 120°,32°
平面直角坐标系中,点A(3,-4)到原点的距离为________.
先化简,再求值: ,其中
如图,在平面直角坐标系中,⊙A与x轴相切与点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图像上,若△OAB的面积为3,则k的值为
A. 3. B. 6. C. 9. D. 12
如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H, A=D, 1=2,求证: B=C.
如图,∥,∠1=120°,∠A=55°,则∠ACB的大小是________.
阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,以此方法继续操作,即可拼成一个新的正方形DEFG.
请你参考小明的做法解决下列问题:
(1)现有5个形状,大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形,要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可).
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE,所得□MNPQ面积为__________.
在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;
(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.