题目内容
分析:延长FE到G,使EG=EF.连接CG,由于已知条件通过SAS证得△DEF≌△CEG得到DF=GC,∠DFE=∠G,由平行线的性质和已知条件得到∠G=∠CAE,故有∠BAE=∠CAE,结论可得.
解答:
证明:如图,
延长FE到G,使EG=EF,连接CG.
在△DEF和△CEG中,ED=EC,∠DEF=∠CEG,FE=EG,
∴△DEF≌△CEG.
∴DF=GC,∠DFE=∠G.
∵DF∥AB,
∴∠DFE=∠BAE.
∵DF=AC,
∴GC=AC.
∴∠G=∠CAE.
∴∠BAE=∠CAE.
即AE平分∠BAC.
延长FE到G,使EG=EF,连接CG.
在△DEF和△CEG中,ED=EC,∠DEF=∠CEG,FE=EG,
∴△DEF≌△CEG.
∴DF=GC,∠DFE=∠G.
∵DF∥AB,
∴∠DFE=∠BAE.
∵DF=AC,
∴GC=AC.
∴∠G=∠CAE.
∴∠BAE=∠CAE.
即AE平分∠BAC.
点评:本题考查了全等三角形的判定和性质;题目通过作辅助线,构造全等三角形进行求解,也是正确解决本题的关键.
练习册系列答案
相关题目