题目内容

精英家教网如图,等边△ABC被一矩形所截,其中EG∥BC,AD=DE=EB,则图中阴影部分面积是△ABC面积的(  )
A、
1
9
B、
2
9
C、
1
3
D、
4
9
分析:先判断出△ADF∽△AEG∽△ABC,再根据相似三角形的面积比等于相似比的平方解答即可.
解答:解:∵DF∥EG∥BC,
∴△ADF∽△AEG∽△ABC,
又∵AD=DE=EB,
∴三个三角形的相似比是1:2:3,
∴面积的比是1:4:9,
设△ADF的面积是a,则△AEG与△ABC的面积分别是4a,9a,
∴S阴影:S△ABC=3a:9a=1:3.
故选C.
点评:本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网