题目内容
计算(a-2)2的结果是( )
A. a2-4 B. a2-2a+4 C. a2-4a+4 D. a2+4
两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成图1。
探索发现:试用不同的方法计算图1的面积,你能发现a、b、c间有什么数量关系?
尝试应用:如图2,在直角三角形ABC中,∠ACB=90°,三边分别为a、b、c,
①若b-a=2,c=10,求此三角形的周长及面积。
②若b=12,a、c均为整数,试求出所有满足条件的a、c的值。
已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是( )
A.a>0 B.3是方程ax²+bx+c=0的一个根
C.a+b+c=0 D.当x<1时,y随x的增大而减小
如图,△ABC中,AB=AC,∠A=30°,点D在AB上,∠ACD=15°,则的值是_______
某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
A. 中位数是4,平均数是3.75 B. 众数是4,平均数是3.75
C. 中位数是4,平均数是3.8 D. 众数是4,平均数是3.8
如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y= x2﹣x+3的绳子.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;
(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.
如图,在矩形ABCD中,AB=10 , BC=5 ,若点M、N分别是线段AC、AB上的两个动点 ,则BM+MN的最小值为_____.
如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.
(1)求抛物线的函数表达式;
(2)P为直线BD下方的抛物线上的一点,连接PD、PB, 求△PBD面积的最大值.
(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
如图,反比例函数的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为( )
A. B. C. D.