题目内容

已知抛物线y=ax2+bx-1经过点A(一1,0)、B(m,0)(m>0),且与y轴交于点C
(1)求抛物线对应的函数表达式(用含m的式子表示);
(2)如图,⊙M经过A、B、C三点,求扇形MBC(阴影部分)的面积S(用含m的式子表示);
(3)若抛物线上存在点P,使得△APB△ABC,求m的值.
(1)∵点(-1,0)、(m,0)在抛物线y=ax2+bx-1上
a-b-1=0
m2a+mb-1=0

解得
a=
1
m
b=
1-m
m

∴抛物线对应的函数表达式为:y=
1
m
x2+
1-m
m
x-1


(2)在抛物线对应的函数表达式中,令x=0,得y=-1,
∴点C坐标为(0,-1).
∴OA=OC,
∴∠OAC=45°,
∴∠BMC=2∠OAC=90°.
又∵BC=
m2+1
,∴MB=MC=
2
2
BC.
S=
1
4
π•MB2=
1
4
π•(
2
2
BC)2=
π
8
BC2=
(m2+1)π
8


(3)如图,∵△ABC△APB,
∴∠PAB=∠BAC=∠45°,
AB
AP
=
AC
AB

过点P作PD⊥x轴,垂足为D,连接PA、PB,
在Rt△PDA中,
∵∠PAB=∠APD=45°,
∴PD=AD,
设点P坐标为(x,x+1),
∵点P在抛物线上,
x+1=
1
m
x2+
1-m
m
x-1
,即x2+(1-2m)x-2m=0,
解得x1=-1,x2=2m,
∴P1(2m,2m+1),P2(-1,0)(不合题意,舍去),
此进AP=
2
PD=(2m+1)
2
,又由
AB
AP
=
AC
AB
,得AC•AP=AB2
2
(2m+1)
2
=(m+1)2,整理,得m2-2m-1=0,
解得m1=1+
2
,m2=1-
2
(舍去),
m的值是1+
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网