题目内容
如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是( )
![]()
A. (-1,-2) B. (-1,1) C. (-1,-1) D. (1,-2)
D 【解析】试题解析:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2), ∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形, ∴矩形ABCD的周长C矩形ABCD=2(AB+BC)=10. ∵2017=201×10+7,AB+BC+CD=7, ∴细线的另一端落在点D上,即(1,-2). 故选D.如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O为位似中心,相似比为
,把△ABO缩小,则点A的对应点A′的坐标是( )
![]()
A. (-1,2) B. (-1,2)或(1,-2)
C. (-9,18)或(9,-18) D. (1,-2)
查看答案△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为( )
A. 1:2 B. 1:3 C. 1:4 D. 1:16
查看答案关于x的方程x2+kx﹣1=0的根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 只有一个实数根 D. 没有实数根
查看答案如图,AD∥BE∥CF,直线l1、l2与三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则DF的长为( )
![]()
A. 4 B. 5 C. 6 D. 8
查看答案砀山果园场2015年水果产量为100吨,2017年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为
,则根据题意可列方程为( )
A.
B. ![]()
C.
D. ![]()
- 题型:单选题
- 难度:困难
若已知
,那么
的值为 ___________
若一个正数的平方根是
和
,则
_______,这个正数是___
如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为______cm2.
![]()
大于
且小于
的所有整数是__.
如果
的平方根等于
,那么
______.
9的平方根是_______
查看答案 试题属性- 题型:填空题
- 难度:中等
如图,在Rt△ACB中,∠C=90°,AC=16cm,BC=8cm,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为4cm/s,Q点的运动速度为2cm/s,那么运动几秒时,△ABC和△PCQ相似?
![]()
在宿州十一中校园文化艺术节中,九年级十班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)求证:四边形BECF是菱形;
(2)若四边形BECF为正方形,求∠A的度数.
![]()
万达旅行社为吸引市民组团去黄山风景区旅游,推出了如下的收费标准:
![]()
宿州高铁新区组织员工去黄山风景区旅游,共支付给万达旅行社旅游费用27 000元,请问该单位这次共有多少员工去黄山风景区旅游?
查看答案如图,Rt
中,
CD是斜边AB的高.
求证:
.
![]()
如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(-4,1),点B的坐标为(-2,1).
![]()
(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1并写出A1点的坐标;
(2)以原点O为位似中心,位似比为2,在第二象限内作△ABC的位似图形△A2B2C2,并写出C2的坐标.
查看答案 试题属性- 题型:解答题
- 难度:中等
解方程:x+5=x2-25.
x1=-5,x2=6 【解析】试题分析:移项,运用因式分解法即可求出方程的解. 试题解析:x+5=x2-25 x2-x-30=0 (x+5)(x-6)=0 x+5=0,x-6=0 x1=-5,x2=6.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=
AE2;④S△ABC=4S△ADF.其中正确的有___________.
![]()
如图,在两个直角三角形中,∠ACB=∠ADC=90°,AC=
,AD=2.当AB=_______时,△ABC与△ACD相似.
![]()
如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为 _______
![]()
设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=__.
查看答案如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是( )
![]()
A. (-1,-2) B. (-1,1) C. (-1,-1) D. (1,-2)
查看答案 试题属性- 题型:解答题
- 难度:中等
砀山果园场2015年水果产量为100吨,2017年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为
,则根据题意可列方程为( )
A.
B. ![]()
C.
D. ![]()
要从小强、小华和小林三人中随机选两人作为旗手,则小强和小林同时入选的概率是( )
A.
B.
C.
D. ![]()
下列条件中能使平行四边形ABCD为菱形的是( )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A. ①③ B. ②③ C. ③④ D. ①②③
查看答案如图,几何体的左视图是( )
![]()
![]()
A. (A) B. (B) C. (C) D. (D)
查看答案一元二次方程x(x-3)=4的解是( )
A. 1 B. 4 C. -1或4 D. 1或-4
查看答案已知:点P是∠MAN的角平分线上一点,PB⊥AM于B,PC⊥AN于C.
(1)如图1,点D、E分别在线段AB、AC上,且∠DPE=
∠BPC,求证:DE=BD+CE;
![]()
(2)如图2,若D在AB的延长线上,E在直线AC上,则DE、BD、CE三者的数量关系变化吗?若变化,请直接写出结论即可。
![]()
- 题型:单选题
- 难度:中等
已知:如图,Rt△ABC中,∠BAC=90°.
(1)按要求作图:(保留作图痕迹)
![]()
①延长BC到点D,使CD=BC;
②延长CA到点E,使AE=2CA;
③连接AD,BE并猜想线段AD与BE的大小关系;
(2)证明(1)中你对线段AD与BE大小关系的猜想.
【解析】
(1)AD与BE的大小关系是________________.
(2)证明:
(1)AD=BE ;(2)详见解析. 【解析】试题分析:(1)根据基本作图,作一条线段等于已知线段的作图方法就可以作出图形; (2)延长AC到点F,使CF=AF,连接BF,证明△ACD≌△FCB,就有AD=FB,进而得出AE=AF,就可以得出BE=BF,从而结论AD=BE. 试题解析:(1)由题意,得作图如下: (2)延长AC到点F,使CF=AF,连接BF, 在△AC...已知:如图,AB=AC,AD=AE,∠BAC=∠DAE=α,BE与AC、CD分别相交于点N、M.
(1)求证:BE=CD;
(2)求∠BMC的大小.(用α表示)
![]()
2017年9月17日,金秋的北京,我校初二全体同学到距学校30千米的房山农业职业学院,参加为期一周的学农劳动。同学们乘坐大巴车前往,李老师因学校有事晚出发了5分钟,开私家车前往,结果和同学们同时到达了农职院。已知李老师开的私家车的速度是大巴车速度的1.2倍,求大巴车和李老师开的私家车的速度分别是多少?
查看答案如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.
![]()
先化简,再求值:
÷
,其中x=3.
解方程: ![]()
- 题型:解答题
- 难度:中等
已知x=
+20,y=4(2b-a),x与y的大小关系是( )
A. x≥y B. x≤y C. x<y D. x>y
A 【解析】x?y=a2+b2+20?8b+4a=(a+2)2+(b?4)2 ∵(a+2)2?0,(b?4)2?0, ∴x?y?0, ∴x?y, 故选:A. 点睛:此题考查因式分解的应用.比较两个式子的大小,通常是让两个式子相减,若为正数,则被减数大,反之减数大.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是( )
![]()
A. AB=AD B. AC平分∠BAD
C.
=BC·AH D. BH⊥AD
如图,在Rt△ABC中,∠C=90°,BD是∠ABC的角平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是( )
![]()
A.
B.
C. mn D. 2mn
甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出的方程是( )
A.
=
B.
C.
D. ![]()
若分式
的值为零,则x的值是( )
A. 1 B. 0 C. -1 D. ±1
查看答案下列各等式中,正确的是( )
A.
B. ![]()
C.
D. ![]()
- 题型:单选题
- 难度:中等
将一次函数y=-x+3的图像沿y轴向下平移2个单位长度,所得图像对应的函数表达式为__________.
y=-x+1 【解析】直接利用一次函数平移规律“上加下减”即可得出答案. 【解析】 ∵将一次函数y=?x+3的图象沿y轴向下平移2个单位长度, ∴平移后所得图象对应的函数关系式为:y=?x+3?2, 即y=?x+1. 故答案为y=?x+1. 点睛:本题考查一次函数图象平移相关知识.利用一次函数平移规律:上加下减,是解题的关键.如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组
的解是 .
![]()
已知a、b、c是△ABC的三边长,且满足关系式
+|a﹣b|=0,则△ABC的形状为_____.
在平面直角坐标系中,点 (-3,4) 关于y轴对称的点的坐标是__________.
查看答案如图,在正方形ODBC中,若OC=1,OA=OB,则数轴上点A表示的数是__________.
![]()
某人一天饮水1890mL,用四舍五入法对1890mL精确到1000mL表示为____mL.
查看答案 试题属性- 题型:填空题
- 难度:中等