题目内容

12.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A开始沿AD方向以 1cm/s的速度运动,动点Q从C开始沿CB方向以3cm/s的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间t秒,
(1)当t为何值时,四边形PQCD是平行四边形.
(2)当t为何值时,四边形PQCD是等腰梯形.

分析 (1)由当PD=CQ时,四边形PQCD为平行四边形,可得方程24-t=3t,解此方程即可求得答案;
(2)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(24-t)=4时,四边形PQCD为等腰梯形,解此方程即可求得答案.

解答 解:根据题意得:PA=tcm,CQ=3tcm,则PD=AD-PA=24-t(cm).
(1)∵AD∥BC,
即PD∥CQ,
∴当PD=CQ时,四边形PQCD为平行四边形,
即24-t=3t,
解得:t=6,
即当t=6s时,四边形PQCD为平行四边形;

(2)过D作DE⊥BC于E,
则四边形ABED为矩形,
∴BE=AD=24cm,
∴EC=BC-BE=2cm,
当PQ=CD时,四边形PQCD为等腰梯形,如图所示:
过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,
则四边形PDEF是矩形,
∴EF=PD,PF=DE,
在Rt△PQF和Rt△CDE中,
$\left\{\begin{array}{l}{PF=DE}\\{PQ=DC}\end{array}\right.$,
∴Rt△PQF≌Rt△CDE(HL),
∴QF=CE,
∴QC-PD=QC-EF=QF+EC=2CE,
即3t-(24-t)=4,
解得:t=7,
即当t=7s时,四边形PQCD为等腰梯形.

点评 此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.注意掌握辅助线的作法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网