题目内容
计算:
(1)2+++|﹣2|; (2)+﹣.
不等式组的最大整数解是______.
如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10;
(1)求证:四边形ABCD是平行四边形。
(2)求四边形ABCD的面积。
如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为( )
A. cm B. 2cm C. cm D. 4cm
为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.
(1)求男式单车和女式单车的单价;
(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?
的算术平方根是_____.
如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)
C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
当x=________时,二次函数y=x2﹣2x+6有最小值________.
学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的倍;用元单独购买甲种图书比单独购买乙种图书要少本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共本,且投入的经费不超过元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?