题目内容

(2013•自贡)如图,已知A、B是反比例函数y=
k
x
(k>0,x>0)
上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是(  )
分析:通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.
解答:解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;
②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l-at),因为l,OC,a均是常数,
所以S与t成一次函数关系.故排除C.
故选A.
点评:本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网