题目内容
分析:连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.
解答:
解:连接BC,
∵∠BOC=90°,
∴BC为圆A的直径,即BC过圆心A,
在Rt△BOC中,OB=8,OC=6,
根据勾股定理得:BC=10,
则圆A的半径为5.
故选C
∵∠BOC=90°,
∴BC为圆A的直径,即BC过圆心A,
在Rt△BOC中,OB=8,OC=6,
根据勾股定理得:BC=10,
则圆A的半径为5.
故选C
点评:此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.
练习册系列答案
相关题目