题目内容
分析:连EB、EC,根据角平分线性质得EF=EG;根据垂直平分线的性质得EB=EC;再根据“HL”定理证明Rt△EFB≌Rt△EGC,从而得BF=CG.
解答:
解:相等.
证明如下:连EB、EC,
∵AE是∠BAC的平分线,
且EF⊥AB于F,EG⊥AC于G,
∴EF=EG.
∵ED⊥BC于D,D是BC的中点,
∴EB=EC.
∴Rt△EFB≌Rt△EGC,
∴BF=CG.
证明如下:连EB、EC,
∵AE是∠BAC的平分线,
且EF⊥AB于F,EG⊥AC于G,
∴EF=EG.
∵ED⊥BC于D,D是BC的中点,
∴EB=EC.
∴Rt△EFB≌Rt△EGC,
∴BF=CG.
点评:本题考查了角平分线性质和垂直平分线的性质,利用了三角形全等的判定和性质解题.正确作出辅助线是解答本题的关键.
练习册系列答案
相关题目