题目内容
已知a,b,c是非零有理数,且满足ab2=| c |
| a |
| a2b2 |
| c2 |
| 2 |
| c |
| 1 |
| a2b2 |
| 2ab |
| c2 |
| 2 |
| abc |
| 2 |
| ab |
| 2ab |
| c |
| 101 |
| c |
分析:先在等式ab2=
-b两边同乘非零数a,得到a2b2=c-ab,移项得出a2b2-c=-ab,c-a2b2=ab.再将得到的三个等式代入所求代数式,然后化简,即可得出结果.
| c |
| a |
解答:解:∵ab2=
-b,
∴a2b2=c-ab,a2b2-c=-ab,c-a2b2=ab.
∴
-
+
+
-
=(
-
)2+
-
=(
)2+
=(
)2+
=
-
=-
,
-
=
=
=
,
(
-
+
+
-
)÷(
-
)÷
=-
÷
÷
=-
•
•
=-
.
故答案为-
.
| c |
| a |
∴a2b2=c-ab,a2b2-c=-ab,c-a2b2=ab.
∴
| a2b2 |
| c2 |
| 2 |
| c |
| 1 |
| a2b2 |
| 2ab |
| c2 |
| 2 |
| abc |
| ab |
| c |
| 1 |
| ab |
| 2a2b2 |
| abc2 |
| 2c |
| abc2 |
| a2b2-c |
| abc |
| 2(a2b2-c) |
| abc2 |
| -ab |
| abc |
| -2ab |
| abc2 |
| 1 |
| c2 |
| 2 |
| c2 |
| 1 |
| c2 |
| 2 |
| ab |
| 2ab |
| c |
| 2c-2a2b2 |
| abc |
| 2ab |
| abc |
| 2 |
| c |
(
| a2b2 |
| c2 |
| 2 |
| c |
| 1 |
| a2b2 |
| 2ab |
| c2 |
| 2 |
| abc |
| 2 |
| ab |
| 2ab |
| c |
| 101 |
| c |
| 1 |
| c2 |
| 2 |
| c |
| 101 |
| c |
| 1 |
| c2 |
| c |
| 2 |
| c |
| 101 |
| 1 |
| 202 |
故答案为-
| 1 |
| 202 |
点评:本题考查了分式的化简求值,属于竞赛题型,难度较大.将已知等式变形是关键,将所求代数式分项组合使之能够应用已知条件是难点.
练习册系列答案
相关题目