题目内容
已知a,b,c是非零有理数,且满足ab2=
-b,则(
-
+
+
-
)÷(
-
)÷
等于______.
| c |
| a |
| a2b2 |
| c2 |
| 2 |
| c |
| 1 |
| a2b2 |
| 2ab |
| c2 |
| 2 |
| abc |
| 2 |
| ab |
| 2ab |
| c |
| 101 |
| c |
∵ab2=
-b,
∴a2b2=c-ab,a2b2-c=-ab,c-a2b2=ab.
∴
-
+
+
-
=(
-
)2+
-
=(
)2+
=(
)2+
=
-
=-
,
-
=
=
=
,
(
-
+
+
-
)÷(
-
)÷
=-
÷
÷
=-
•
•
=-
.
故答案为-
.
| c |
| a |
∴a2b2=c-ab,a2b2-c=-ab,c-a2b2=ab.
∴
| a2b2 |
| c2 |
| 2 |
| c |
| 1 |
| a2b2 |
| 2ab |
| c2 |
| 2 |
| abc |
| ab |
| c |
| 1 |
| ab |
| 2a2b2 |
| abc2 |
| 2c |
| abc2 |
| a2b2-c |
| abc |
| 2(a2b2-c) |
| abc2 |
| -ab |
| abc |
| -2ab |
| abc2 |
| 1 |
| c2 |
| 2 |
| c2 |
| 1 |
| c2 |
| 2 |
| ab |
| 2ab |
| c |
| 2c-2a2b2 |
| abc |
| 2ab |
| abc |
| 2 |
| c |
(
| a2b2 |
| c2 |
| 2 |
| c |
| 1 |
| a2b2 |
| 2ab |
| c2 |
| 2 |
| abc |
| 2 |
| ab |
| 2ab |
| c |
| 101 |
| c |
| 1 |
| c2 |
| 2 |
| c |
| 101 |
| c |
| 1 |
| c2 |
| c |
| 2 |
| c |
| 101 |
| 1 |
| 202 |
故答案为-
| 1 |
| 202 |
练习册系列答案
相关题目