题目内容
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.
分析:(1)连接PC,通过证明△PCD≌△PBE,得出PD=PE.
(2)分为点C与点E重合、CE=2-
、CE=1、E在CB的延长线上四种情况进行说明.
(2)分为点C与点E重合、CE=2-
| 2 |
解答:解:(1)由图①可猜想PD=PE,再在图②中构造全等三角形来说明.即PD=PE.
理由如下:
连接PC,因为△ABC是等腰直角三角形,P是AB的中点,
∴CP=PB,CP⊥AB,∠ACP=
∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE.
(2)△PBE是等腰三角形,
①当PE=PB时,此时点C与点E重合,CE=0;
②当BP=BE时,E在线段BC上,CE=2-
;E在CB的延长线上,CE=2+
;
③当EP=EB时,CE=1.
理由如下:
连接PC,因为△ABC是等腰直角三角形,P是AB的中点,
∴CP=PB,CP⊥AB,∠ACP=
| 1 |
| 2 |
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE.
(2)△PBE是等腰三角形,
①当PE=PB时,此时点C与点E重合,CE=0;
②当BP=BE时,E在线段BC上,CE=2-
| 2 |
| 2 |
③当EP=EB时,CE=1.
点评:本题考查了全等三角形的判定与性质及等腰三角形的性质;此题是分类讨论题,应分情况进行论证,不能漏解.
练习册系列答案
相关题目