题目内容
读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为
n,即
n=1+2+3+4+…+100.这里“∑”是求和符号.通过对以上材料的阅读:
(1)计算:
n=
(2)计算:
-
=
;运用这个式子,计算
.
| 100 |
| n=1 |
| 100 |
| n=1 |
(1)计算:
| 50 |
| n=1 |
1275
1275
.(2)计算:
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n(n+1) |
| 1 |
| n(n+1) |
| 2012 |
| n=1 |
| 1 |
| n(n+1) |
分析:(1)根据例题可得
n=1+2+3+4+…+48+49+50,再计算即可;
(2)首先通分,再进行分式加减即可;根据分式的计算可得
=
-
,进而得出即可.
| 50 |
| n=1 |
(2)首先通分,再进行分式加减即可;根据分式的计算可得
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)
n=1+2+3+4+…+48+49+50=1275;
故答案为:1275;
(2)
-
=
-
=
;
=1-
+
-
+
-
+
+…+
-
+
-
=1-
=
.
故答案为:
.
| 50 |
| n=1 |
故答案为:1275;
(2)
| 1 |
| n |
| 1 |
| n+1 |
| n+1 |
| n(n+1) |
| n |
| n(n+1) |
| 1 |
| n(n+1) |
| 2012 |
| n=1 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2012 |
| 1 |
| 2013 |
=1-
| 1 |
| 2013 |
=
| 2012 |
| 2013 |
故答案为:
| 1 |
| n(n+1) |
点评:此题主要考查了数字变化规律以及新概念问题,根据已知得出数字变化规律是解题关键.
练习册系列答案
相关题目