题目内容
三角形的外心是三角形的( )的交点.
A. 三个内角平分线 B. 三边垂直平分线
C. 三条中线 D. 三条高
解不等式(组),并把解集在数轴上表示出来.
(1)≤; (2).
矩形具有而平行四边形不一定具有的性质是( )
A. 对角线互相垂直 B. 对角线相等 C. 对角线互相平分 D. 对角相等
如图,⊙O是以原点为圆心, 为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为______.
直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是 .
如图1,二次函数y=-x2+bx+c的图象过点A(3,0),B(0,4)两点,点P从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P作PD⊥y轴于点D,交抛物线于点C.设运动时间为t(秒)
图1 图2
(1)求二次函数y=-x2+bx+c的表达式;
(2)连接BC,当t=时,求△BCP的面积;
(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以每秒1个单位长度的速度运动,当点P与B重合时,P、Q两点同时停止运动.连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系式及t的取值范围.
(1)解方程:x2-2x=4 (2)解不等式组
甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
在平面直角坐标系中,我们定义直线为抛物线、b、c为常数,的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.
已知抛物线与其“梦想直线”交于A、B两点点A在点B的左侧,与x轴负半轴交于点C.
填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______;
如图,点M为线段CB上一动点,将以AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的“梦想三角形”,求点N的坐标;
当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.