题目内容
分析:作AH⊥MN于H,根据含30度的直角三角形三边的关系得到AH=
PA=80m,由于这个距离小于100m,所以可判断拖拉机在公路MN上沿PN方向行驶时,学校受到噪音影响;然后以点A为圆心,100m为半径作⊙A交MN于B、C,根据垂径定理得到BH=CH,再根据勾股定理计算出BH=60m,则BC=2BH=120m,然后根据速度公式计算出拖拉机在线段BC上行驶所需要的时间.
| 1 |
| 2 |
解答:解:学校受到噪音影响.理由如下:
作AH⊥MN于H,如图,
∵PA=160m,∠QPN=30°,
∴AH=
PA=80m,
而80m<100m,
∴拖拉机在公路MN上沿PN方向行驶时,学校受到噪音影响,
以点A为圆心,100m为半径作⊙A交MN于B、C,如图,
∵AH⊥BC,
∴BH=CH,
在Rt△ABH中,AB=100m,AH=80m,
BH=
=60m,
∴BC=2BH=120m,
∵拖拉机的速度=18km/h=5m/s,
∴拖拉机在线段BC上行驶所需要的时间=
=24(秒),
∴学校受影响的时间为24秒.
作AH⊥MN于H,如图,
∵PA=160m,∠QPN=30°,
∴AH=
| 1 |
| 2 |
而80m<100m,
∴拖拉机在公路MN上沿PN方向行驶时,学校受到噪音影响,
以点A为圆心,100m为半径作⊙A交MN于B、C,如图,
∴BH=CH,
在Rt△ABH中,AB=100m,AH=80m,
BH=
| AB2-AH2 |
∴BC=2BH=120m,
∵拖拉机的速度=18km/h=5m/s,
∴拖拉机在线段BC上行驶所需要的时间=
| 120 |
| 5 |
∴学校受影响的时间为24秒.
点评:本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交?d<r;直线l和⊙O相切?d=r;当直线l和⊙O相离?d>r.也考查了垂径定理、勾股定理以及含30度的直角三角形三边的关系.
练习册系列答案
相关题目