题目内容
如图,抛物线y=ax2-2x+c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点
为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)⊙M是过A、B、C三点的圆,连接MC、MB、BC,求劣弧CB的长;(结果用精确值表示)
(3)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.(结果用精确值表示)
(1)求此抛物线的解析式;
(2)⊙M是过A、B、C三点的圆,连接MC、MB、BC,求劣弧CB的长;(结果用精确值表示)
(3)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.(结果用精确值表示)
(1)把x=0和y=0分别代入y=x-3,
得当x=0时,y=-3;
当y=0时,x=3.
∴A(3,0),B(0,-3).
把x=0时,y=-3;当y=0时,x=3代入y=ax2-2x+c,
得
,
解得:
,
∴y=x2-2x-3.
(2)当y=0时,x2-2x-3=0,
解得x1=3,x2=-1.
∴C(-1,0)
∴AC=4,BC=
.
∵OA=OB=3,
∴∠CAB=45°,
∴∠CMB=90度.
∴MB=MC=
∴
的长是
π.
(3)∵y=x2-2x-3的对称轴是x=-
=1,
当x=1时,y=-4,
∴D(1,-4).
∴S△ACD=
×4×4=8,
∴S△APC=10.
设存在点P(x,y),
∴|y|=5.
∴y=5时,x2-2x-3=5,
解得x1=4,x2=-2,
当y=-5时,P点不在抛物线上,
∴P1(4,5),P2(-2,5).
得当x=0时,y=-3;
当y=0时,x=3.
∴A(3,0),B(0,-3).
把x=0时,y=-3;当y=0时,x=3代入y=ax2-2x+c,
得
|
解得:
|
∴y=x2-2x-3.
(2)当y=0时,x2-2x-3=0,
解得x1=3,x2=-1.
∴C(-1,0)
∴AC=4,BC=
| 10 |
∵OA=OB=3,
∴∠CAB=45°,
∴∠CMB=90度.
∴MB=MC=
| 5 |
∴
| BC |
| ||
| 2 |
(3)∵y=x2-2x-3的对称轴是x=-
| b |
| 2a |
当x=1时,y=-4,
∴D(1,-4).
∴S△ACD=
| 1 |
| 2 |
∴S△APC=10.
设存在点P(x,y),
∴|y|=5.
∴y=5时,x2-2x-3=5,
解得x1=4,x2=-2,
当y=-5时,P点不在抛物线上,
∴P1(4,5),P2(-2,5).
练习册系列答案
相关题目