题目内容
【题目】(2017南宁,第26题,10分)如图,已知抛物线
与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.
(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时,
均为定值,并求出该定值.
![]()
【答案】(1)a=
,A(﹣
,0),抛物线的对称轴为x=
;(2)点P的坐标为(
,0)或(
,﹣4);(3)
.
【解析】试题分析:(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;
(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(
,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;
(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.
试题解析:(1)∵C(0,3),∴﹣9a=3,解得:a=
.
令y=0得:
,∵a≠0,∴
,解得:x=﹣
或x=
,∴点A的坐标为(﹣
,0),B(
,0),∴抛物线的对称轴为x=
.
(2)∵OA=
,OC=3,∴tan∠CAO=
,∴∠CAO=60°.
∵AE为∠BAC的平分线,∴∠DAO=30°,∴DO=
AO=1,∴点D的坐标为(0,1).
设点P的坐标为(
,a).
依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.
当AD=PA时,4=12+a2,方程无解.
当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(
,0).
当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4,∴点P的坐标为(
,﹣4).
综上所述,点P的坐标为(
,0)或(
,﹣4).
(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:
,解得:m=
,∴直线AC的解析式为
.
设直线MN的解析式为y=kx+1.
把y=0代入y=kx+1得:kx+1=0,解得:x=
,∴点N的坐标为(
,0),∴AN=
=
.
将
与y=kx+1联立解得:x=
,∴点M的横坐标为
.
过点M作MG⊥x轴,垂足为G.则AG=
.
![]()
∵∠MAG=60°,∠AGM=90°,∴AM=2AG=
=
,∴
=
=
=
=
.
【题目】要从甲、乙两名同学中选出一名,代表班级参加射击比赛. 现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:
![]()
根据以上信息,整理分析数据如下:
平均成绩(环) | 中位数(环) | 众数(环) | 方差( | |
甲 | 7 |
| 7 | 1. 2 |
乙 |
| 7. 5 |
| 4. 2 |
(1)分别求表格中
、
、
的值.
(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.
【题目】观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题
![]()
(1)填写下表:
图形 | 挖去三角形的个数 |
图形1 | 1 |
图形2 | 1+3 |
图形3 | 1+3+9 |
图形4 |
|
(2)根据这个规律,求图n中挖去三角形的个数wn;(用含n的代数式表示)
(3)若图n+1中挖去三角形的个数为wn+1,求wn+1﹣Wn