题目内容
用配方法解一元二次方程时,下列变形正确的为( )
A. B.
C. D.
-2015的绝对值是( )
A.2015 B.-2015 C. D.
已知正数的两个不同的平方根是和,则m= .
如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
如图,在直角的内部有一滑动杆.当端点沿直线向下滑动时,端点会随之自动地沿直线向左滑动.如果滑动杆从图中处滑动到处,那么滑动杆的中点所经过的路径是( )
A.直线的一部分 B.圆的一部分
C.双曲线的一部分 D.抛物线的一部分
我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.
特例探索
(1)如图1,当∠ABE=45°,c=时,a= ,b= .
如图2,当∠ABE=30°,c=4时,a= ,b= .
归纳证明
(2)请你观察(1)中的计算结果,猜想,,三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
拓展应用
(3)如图4,在ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3,求AF的长.
⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).
(1)如图1,AC=BC;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.
我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
(1)如图1,当∠ABE=45°,c=时,a= ,b= ;
如图2,当∠ABE=30°,c=4时,a= ,b= ;
(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3.求AF的长.
火星与地球的距离约为千米,这个数据用科学记数法表示为 千米.