题目内容

如图,Rt△ABC中,CD是斜边上的高,DE⊥AC于E,AC:CB=4:5,则AE:ED等于________.

4:5
分析:在Rt△ACB中,AC:CB=AD:DC;同理可得在Rt△ADC中,AD:DC=AE:ED;故可以得出AE:ED=AC:CB=4:5
解答:在Rt△ACB中,
∵∠A+∠B=90°,∠A+∠ACD=90°,∠B+∠BCD=90°
∴∠A=∠DCB,∠ACD=∠B
∴△ACD∽△CBD
∴AC:CB=AD:DC
在Rt△ADC中,同理AD:DC=AE:ED,
∴AE:ED=AC:CB=4:5
故此题应该填4:5.
点评:本题主要考查了相似三角形的判定和性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网