题目内容
A、
| ||
B、
| ||
C、
| ||
| D、2 |
分析:根据矩形的对角线互相平分,可将对角线一半的长度求出,根据BE的长,可将点E到两条对角线交点的距离求出,再根据勾股定理求CE的长,进而可求tan∠ACE的值.
解答:
解:设AC和BD相交于点O,
∵BD=BE+DE=10,∴OB=OC=5.
∵BE=2,∴OE=3.
在Rt△OCE中,CE=
=
=4,
∴tan∠ACE=
=
.
故选C.
∵BD=BE+DE=10,∴OB=OC=5.
∵BE=2,∴OE=3.
在Rt△OCE中,CE=
| OC2-OE2 |
| 52-32 |
∴tan∠ACE=
| OE |
| CE |
| 3 |
| 4 |
故选C.
点评:考查综合应用解直角三角形、直角三角形性质进行逻辑推理和运算的能力.
练习册系列答案
相关题目