题目内容
【题目】珍珍与环环两人一起做游戏,游戏规则如下:每人从1,2,3,4,5,6,7,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于她们各自选择的数,就再做一次上述游戏,直到决出胜负.若环环事先选择的数是5,用列表法或画树状图的方法,求她获胜的概率.
![]()
【答案】
【解析】试题分析:先根据题意用列表法将所有的情况列出来,进而得出所有等可能的情况以及结果是5的情况;
再运用概率公式即可求出小军获胜的概率.
试题解析:珍珍与环环转动的数字分别记为甲与乙,两人转动后得到的数字之和可列表如下:
甲 乙 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 7 |
4 | 5 | 6 | 7 | 8 |
由上表可以看出,转动两次转盘,可能出现的结果有16种,并且它们出现的可能性相等.
两次转动的点数之和为5(记为事件A)的结果共有4种
所以
答:环环获胜的概率是![]()
练习册系列答案
相关题目
【题目】目前节能灯在城市已基本普及,为响应号召,某商场计划购进甲,乙两种节能灯共200只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲型 | 20 | 30 |
乙型 | 30 | 45 |
(1)若购进甲,乙两种节能灯共用去5200元,求甲、乙两种节能灯各进多少只?
(2)若商场准备用不多于5400元购进这两种节能灯,问甲型号的节能灯至少进多少只?
(3)在(2)的条件下,该商场销售完200只节能灯后能否实现盈利超过2690元的目标?若能请你给出相应的采购方案;若不能说明理由.