题目内容
某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:| 时间x(分钟) | … | 10 | 20 | 30 | 40 | … |
| 水量y(m3) | … | 3750 | 3500 | 3250 | 3000 | … |
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.
【答案】分析:(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;
(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.
解答:解:(1)由图表可知,每10分钟放水250m3,
所以,第80分钟时,池内有水4000-8×250=2000m3;
(2)设函数关系式为y=kx+b,
∵x=20时,y=3500,
x=40时,y=3000,
∴
,
解得:
,
所以,y=-25x+4000.
点评:本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,仔细分析数据,从图表准确获取信息是解题的关键.
(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.
解答:解:(1)由图表可知,每10分钟放水250m3,
所以,第80分钟时,池内有水4000-8×250=2000m3;
(2)设函数关系式为y=kx+b,
∵x=20时,y=3500,
x=40时,y=3000,
∴
解得:
所以,y=-25x+4000.
点评:本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,仔细分析数据,从图表准确获取信息是解题的关键.
练习册系列答案
相关题目
某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
| 时间x(分钟) | … | 10 | 20 | 30 | 40 | … |
| 水量y(m3) | … | 3750 | 3500 | 3250 | 3000 | … |
(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.
某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
|
时间x(分钟) |
… |
10 |
20 |
30 |
40 |
… |
|
水量y(m3) |
… |
3750 |
3500 |
3250 |
3000 |
… |
(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.