题目内容
正方形网格中,∠AOB如图放置,则tan∠AOB=______________.
(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.
(1)如图①,若∠AOC=30°,求∠DOE的度数;
(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);
(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.
①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;
②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.
已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是( )
A. -2 B. 2 C. 3 D. 5
圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )
A. 0.36π平方米 B. 0.81π平方米
C. 2π平方米 D. 3.24π平方米
如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是( )
A. B. C. D.
(分)周末,小英与她的父亲、母亲计划从西安外出旅游,初步选择了位于西安东线的景点:兵马俑, :华山,以及位于西线的景点:太白山, :法门寺, :杨凌现代农业示范园.由于时间仓促,他们只能去其中的两个景点,并且希望两个景点能位于一条线路上.到底去哪两个景点,三人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸卡片游戏来决定.规则如下:在五个背面完全相同的卡片上写上五个景点的代号,然后洗匀,背面朝上放在桌面上,让小英随机摸出一张,不放回,然后让小英母亲再随机摸出一张.照上面的规则,请你解答下列问题:
()己知小英的理想旅游景点是兵马俑,求小英摸出写有的卡片的概率.
()求小英和母亲摸出的景点位于一条线上(东线或西线)的概率.
(分)计算:
.
如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,≈1.732,≈1.414)
下列数轴画正确的是( )
A. B.
C. D.