题目内容
已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,-3).
(1)求抛物线的表达式及顶点D的坐标;
(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;
(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.

(1)求抛物线的表达式及顶点D的坐标;
(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;
(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.
考点:二次函数综合题,等腰三角形的性质,平行四边形的性质
专题:压轴题,分类讨论
分析:(1)应用待定系数法即可求得抛物线的解析式,然后化为顶点式即可求得顶点的坐标.
(2)先求得直线BC的解析式,设P(x,-x2+4x-3),则F(x,x-3),根据PF等于P点的纵坐标减去F点的纵坐标即可求得PF关于x的函数关系式,从而求得P的坐标和PF的最大值;
(3)在运动过程中,分三种情形,需要分类讨论,避免漏解.
(2)先求得直线BC的解析式,设P(x,-x2+4x-3),则F(x,x-3),根据PF等于P点的纵坐标减去F点的纵坐标即可求得PF关于x的函数关系式,从而求得P的坐标和PF的最大值;
(3)在运动过程中,分三种情形,需要分类讨论,避免漏解.
解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,-3).
∴
,
解得
,
∴抛物线的解析式:y=-x2+4x-3,
由y=-x2+4x-3=-(x-2)2+1,
可知:顶点D的坐标(2,1).
(2)存在;
设直线BC的解析式为:y=kx+b,
则
,
解得
,
∴直线BC的解析式为y=x-3,
设P(x,-x2+4x-3),则E(x,x-3),
∴PE=(-x2+4x-3)-(x-3)=-x2+3x=-(x-
)2+
,
∴当x=
时,PF有最大值为
.
∴存在一点P,使线段PE的长最大,最大值为
.
(3)∵A(1,0)、B(3,0)、D(2,1)、C(0,-3),
∴可求得直线AD的解析式为:y=x-1;
直线BC的解析式为:y=x-3.
∴AD∥BC,且与x轴正半轴夹角均为45°.
∵AF∥y轴,
∴F(1,-2),
∴AF=2.
①当0≤t≤
时,如答图1-1所示.
此时四边形AFF′A′为平行四边形.

设A′F′与x轴交于点K,则AK=
AA′=
t.
∴S=S?AFF′A′=AF•AK=2×
t=
t;
②当
<t≤2
时,如答图1-2所示.
设O′C′与AD交于点P,A′F′与BD交于点Q,
则四边形PC′F′A′为平行四边形,△A′DQ为等腰直角三角形.

∴S=S?PC′F′A′-S△A′DQ=2×1-
(t-
)2=-
t2+
t+1;
③当2
<t≤3
时,如答图1-3所示.
设O′C′与BD交于点Q,则△BC′Q为等腰直角三角形.

∵BC=3
,CC′=t,
∴BC′=3
-t.
∴S=S△BC′Q=
(3
-t)2=
t2-3
t+9.
综上所述,S与t的函数关系式为:
S=
.
∴
|
解得
|
∴抛物线的解析式:y=-x2+4x-3,
由y=-x2+4x-3=-(x-2)2+1,
可知:顶点D的坐标(2,1).
(2)存在;
设直线BC的解析式为:y=kx+b,
则
|
解得
|
∴直线BC的解析式为y=x-3,
设P(x,-x2+4x-3),则E(x,x-3),
∴PE=(-x2+4x-3)-(x-3)=-x2+3x=-(x-
| 3 |
| 2 |
| 9 |
| 4 |
∴当x=
| 3 |
| 2 |
| 9 |
| 4 |
∴存在一点P,使线段PE的长最大,最大值为
| 9 |
| 4 |
(3)∵A(1,0)、B(3,0)、D(2,1)、C(0,-3),
∴可求得直线AD的解析式为:y=x-1;
直线BC的解析式为:y=x-3.
∴AD∥BC,且与x轴正半轴夹角均为45°.
∵AF∥y轴,
∴F(1,-2),
∴AF=2.
①当0≤t≤
| 2 |
此时四边形AFF′A′为平行四边形.
设A′F′与x轴交于点K,则AK=
| ||
| 2 |
| ||
| 2 |
∴S=S?AFF′A′=AF•AK=2×
| ||
| 2 |
| 2 |
②当
| 2 |
| 2 |
设O′C′与AD交于点P,A′F′与BD交于点Q,
则四边形PC′F′A′为平行四边形,△A′DQ为等腰直角三角形.
∴S=S?PC′F′A′-S△A′DQ=2×1-
| 1 |
| 2 |
| 2 |
| 1 |
| 2 |
| 2 |
③当2
| 2 |
| 2 |
设O′C′与BD交于点Q,则△BC′Q为等腰直角三角形.
∵BC=3
| 2 |
∴BC′=3
| 2 |
∴S=S△BC′Q=
| 1 |
| 2 |
| 2 |
| 1 |
| 2 |
| 2 |
综上所述,S与t的函数关系式为:
S=
|
点评:本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法求解析式、最值、平行四边形、等腰直角三角形、图形面积计算等知识点.第(2)问的解题要点是列出线段PE的表达式;第(3)问的解题要点是分类讨论的数学思想及图形面积的计算.
练习册系列答案
相关题目
下列各式中,运算结果是x2-16y2的是( )
| A、(x-4y)2 |
| B、(-4y+x)(-4y-x) |
| C、(x+2y)(x-8y) |
| D、(x+4y)(x-4y) |
方程(1-x)2=2的根是( )
| A、-1,3 | ||||
| B、1,-3 | ||||
C、
| ||||
D、1-
|