题目内容
不等式组的解集是:
A、 B、 C、 D、无解
C
如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是
A. B.
C. D.
已知关于x的一元二次方程:.
(1)试判断原方程根的情况;(4分)
(2)若抛物线与轴交于两点,则,两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.
(友情提示:)(6分)
如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于
如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长
若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)。那么下面四个结论:
①∠AOB=∠;②△AOB∽△;③;
④扇形AOB与扇形的面积之比为。成立的个数为:
A、1个 B、2个 C、3个 D、4个
如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 度。
一个角的度数为20°,则它的补角的度数为 .
已知抛物线y=x2+c与x轴交于A(-1,0),B两点,交y轴于点C
(1) 求抛物线的解析式
(2) 点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)
(3) 如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长