题目内容
(1)计算:+﹣sin45°
(2)化简:
如图,在▱ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.
在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为( )
A. 7 B. 8 C. 8或17 D. 7或17
已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.
(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= 3﹣或 .
如图,在菱形ABCD中,AB=2,,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;
②当AM的值为 时,四边形AMDN是菱形。
如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为 .
某市3月下旬抽样六天的最高气温如下(单位℃):18,19,20,21,19,23,对这组数据下列说法错误的是( )
A.平均数是20 B.众数是19 C.中位数是21 D.都不正确
如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .
下列一元二次方程中,两实根之和为1的是 ( )
A.x2—x+1=0 B.x2+x—3=0
C.2 x2-x-1=0 D.x2-x-5=0