题目内容
如图中序号(1)(2)(3)(4)对应的四个三角形,都是这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( )
A.(1) B.(2) C.(3) D.(4)
先化简,再求值:,其中.
如图,从边长为的大正方形中剪掉一个边长为的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是
A. B.
C. D.
如图,在中,,,是两条对角线的交点,过点作的垂线分别交边,于点,,点是边的一个三等分点,则与的面积比为 .
下列运算正确的是( )
C. D.
如图,在中,设的对边分别为,过点作,垂足为,会有,则
,即
同理,
通过推理还可以得到另一个表达三角形边角关系的定理—余弦定理:
在中,若的对边分别为,则
用上面的三角形面积公式和余弦定理解决问题:
(1)如图,在中,,的对边分别是3和8.
求和.
【解析】_______________;
______________.
(2)在中,已知,分别是以为边长的等边三角形,设的面积分别为,求证: .
先化简,再求值: 其中
如图1,抛物线与轴交于两点,与轴交于点,,矩形的边,延长交抛物线于点.
(1)求抛物线的表达式;
(2)如图2,点是直线上方抛物线上的一个动点,过点作轴的平行线交直线于点,作,垂足为.设的长为,点的横坐标为,求与的函数关系是(不必写出的取值范围),并求出的最大值;
(3)如果点是抛物线对称轴上的一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的的坐标;若不存在,请说明理由.
式子有意义,则实数a的取值范围是( )
A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2