题目内容
如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是( )
A、AB=BC B、AC=BC C、∠B=60° D、∠ACB=60°
如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为 cm.
不等式组的解集是 .
甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.
(1)下列事件是必然事件的是( )
A、乙抽到一件礼物
B、乙恰好抽到自己带来的礼物
C、乙没有抽到自己带来的礼物
D、只有乙抽到自己带来的礼物
(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.
某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:=1.69m,=1.69m,=0.0006,=0.00315,则这两名运动员中 的成绩更稳定.
已知关于x的一元二次方程x2+x+m=0的一个实数根为1,那么它的另一个实数根是( )
A、-2 B、0 C、1 D、2
如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.
(1)若l:y=-2x+2,则P表示的函数解析式为 ;若P:y=-x2-3x+4, 则l表示的函数解析式为 .
(2)求P的对称轴(用含m,n的代数式表示);
(3)如图②,若l:y=-2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(4)如图③,若l:y=mx-4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是( )
A B C D
阅读材料:
关于三角函数还有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=.
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
例:tan15°=tan(45°-30°)=
=
根据以上阅读材料,请选择适当的公式解答下面问题
(1)计算:sin15°;
(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据=1.732,=1.414)