题目内容
2016的相反数是( )
A. B. C.±2016 D.
如图,一架梯子AB的长为2.5m,斜靠在竖直的墙上,这时梯子的底端A到墙的距离AO=0.7m,如果梯子顶端B沿墙下滑0.4m到达D,梯子底端A将向左滑动到C,求AC的距离?
下列计算正确的是( )
A. B. C. D.
如图,已知A、B是反比例函数y= k x(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C.过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为( )
A. B. C. D.
下列计算中,正确的是( )
如图,直角梯形ABCD中,AB∥CD,∠ADC=90°,AB=AC,过点B作BE⊥AC于点E.
(1)求证:△ADC≌△BEA;
(2)若AD=4,CD=3,求BC的长.
如图,已知直线l的表达式为y=x,点A1的坐标为(1,0),以O为圆心,OA1为半径画弧,与直线l交于点C1,记长为m1;过点A1作A1B1垂直x轴,交直线l于点B1,以O为圆心,OB1为半径画弧,交x轴于C2,记的长为m2;过点B1作A2B1垂直l,交x轴于点A2,以O为圆心,OA2为半径画弧,交直线l于C3,记的长为m3…按照这样规律进行下去,mn的长为( )
分解因式.
(1);
(2).
如图,已知抛物线与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;
(1)求抛物线的函数表达式;
(2)如果抛物线的对称轴上存在一点P,使得△APC周长的值最小,求此时P点坐标及△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.(直接写出结果)