题目内容
如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为且=24,则=___________
如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.
已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.
甲、乙、丙、丁四位选手各10次射击的平均成绩都是9.2环,其中甲的成绩的方差为0.015, 乙的成绩的方差为0.035,丙的成绩的方差为0.025,丁的成绩的方差为0.027,由此可知
(A)甲的成绩最稳定 (B)乙的成绩最稳定
(C)丙的成绩最稳定 (D)丁的成绩最稳定
已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.
等腰三角形的两边长分别为3cm和6cm,这个等腰三角形的周长为_______cm.
下列多项式乘法中,不能运用平方差公式进行计算的是( )
A. B. C. D.
已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .
如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.