题目内容

【题目】如图ABCD是半径为5的⊙O的两条弦AB=8,CD=6,MN是直径ABMN于点ECDMN于点FPEF上的任意一点PA+PC的最小值为______

【答案】

【解析】

由于A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值.

解:连接OA,OB,OC,作CH垂直于ABH.

∵AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,
∴BE=AB=4,CF=CD=3,
∴OE===3,

OF===4,

∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,

Rt△BCH中根据勾股定理得到BC===.

故答案为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网