题目内容
在直角坐标系xoy中,一次函数y=kx+b经过点A(
,
)、B(2,0),正比例函数为y=3x,则不等式3x>kx+b>0的解集是( )
| 1 |
| 2 |
| 3 |
| 2 |
分析:首先利用待定系数法求出一次函数解析式为y=-x+2,求不等式3x>kx+b>0的解集,就是求3x>-x+2>0,解不等式组
即可.
|
解答:解:∵一次函数y=kx+b经过点A(
,
)、B(2,0),
∴
,
解得:
,
∴一次函数解析式为:y=-x+2,
∴3x>-x+2>0,
解得:
<x<2,
故选:C.
| 1 |
| 2 |
| 3 |
| 2 |
∴
|
解得:
|
∴一次函数解析式为:y=-x+2,
∴3x>-x+2>0,
解得:
| 1 |
| 2 |
故选:C.
点评:此题主要考查了一次函数与一元一次不等式,关键是利用待定系数法求出一次函数解析式.
练习册系列答案
相关题目