题目内容
如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长为x,宽为y,则依题意列二元一次方程组正确的是( )
A. B. C. D.
如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=( )
A. 106° B. 146° C. 148° D. 156°
如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了_________米.
(本小题满分9分)
(1)阅读下文,寻找规律:
已知x≠1时,(1-x)(1+x)=1-x2,
(1-x)(1+x+x2)=1-x3,
(1-x)(1+x+x2+x3)=1-x4.…
观察上式,并猜想:
(1-x)(1+x+x2+ x3+x4)=______________.
(1-x)(1+x+x2+…+xn)=_______________.
(2)通过以上规律,请你进行下面的探素:
①(a-b)(a+b)= ______________.
②(a-b)(a2+ab+b2)= ______________.
③(a-b)(a3+a2b+ab2+b3)= ______________.
(3)根据你的猜想,计算:
1+2+22+…+22015+22016+22017
如图8,AD//EG∥BC,AC∥EF,若∠1=50°,则∠AHG=__________°.
如果等腰三角形两边长是6和3,那么它的周长是( )
A. 9 B. 12 C. 15或12 D. 15
课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”
(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;
(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.
已知正多边形的每个内角均为108°,则这个正多边形的边数为( )
A. 3 B. 4 C. 5 D. 6
如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为 .