题目内容
如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点.
(1)在AC上找一点P,使△BPE的周长最小;
(2)求出△BPE周长的最小值.
(2)∵四边形ABCD是正方形,
∴B、D关于AC对称,
∴PB=PD,
∴PB+PE=PD+PE=DE.
∵BE=2,AE=3BE,
∴AE=6,AB=8,
∴DE=
∴PB+PE的最小值是10,
∴△BPE周长的最小值=PB+PE+BE=10+2=12.
分析:由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
点评:本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
练习册系列答案
相关题目