题目内容
下列命题不正确的是( )
A.0是整式
B.x=0是一元一次方程
C.(x+1)(x﹣1)=x2+x是一元二次方程
D.是二次根式
如图,在△ABC中,DE∥BC,,BC=12,则DE的长是( )
A.3 B.4 C.5 D.6
从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是 .
如图,AB是半圆O的直径,AB=a,C是半圆上一点,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.
(1)求证:△CDF≌△BDE;
(2)当AD= 时,四边形AODC是菱形;
(3)当AD= 时,四边形AEDF是正方形.
如图,直线a,b被直线c,d所截,若∠1=112°,∠2=68°,∠3=100°,则∠4= .
(2016•海南模拟)如图,已知抛物线与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,且B(3,0),AB=2
(1)求该抛物线的函数关系式;
(2)如果抛物线的对称轴上存在一点P,使得△APC的周长最小,求此时P点的坐标,并求出△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.
如图,菱形ABCD的边长为5,一条对角线长为8,则此菱形的面积是 .
(2016•桂林三模)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点,该抛物线的对称轴与x轴交于点E.
(1)直接写出抛物线的解析式为 ;
(2)以点E为圆心的⊙E与直线AB相切,求⊙E的半径;
(3)连接BC,点P是第三象限内抛物线上的动点,连接PE交线段BC于点D,当△CED为直角三角形时,求点P的坐标.
一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )
A.5元 B.10元 C.0元 D.36元